Canfield Joint - Vibration Isolation System for High Precision Pointing, Phase II

Metadata Updated: May 2, 2019

During our Phase I STTR effort, Balcones Technologies, LLC (BT) and The University of Texas at Austin Center for Electromechanics (CEM) successfully achieved all Phase I objectives and developed concept designs for controlled Canfield Joint Systems (CJS) for numerous applications that currently employ two-axis gimbal systems, including flywheel energy storage systems, integrated flywheel energy storage and attitude control systems, controlled moment gyros (CMG), and pointing systems for satellite-to-earth and satellite-to-satellite space optical communications (SOC). While all applications offered advantages for CJS compared to gimbal alternatives, a major result from our Phase I commercialization study was that the highest payoff Phase II demonstration for NASA and other commercial applications would focus on a CJS simultaneously sized for two applications: small satellite CMG and small satellite optical communications. Since the SOC application is more demanding and this emerging application offers more terrestrial and space applications, this application will serve as our demonstration target for Phase II. Additionally, since the SOC application has demanding vibration isolation requirements (especially for deep space communications) and since the BT-CEM team has very advanced expertise in this area, our Phase II demonstration will include development and integration of a vibration isolation system (VIS). Some key CJS-SOC features include: More than 30% improvement in pointing accuracy and precision compared to 2 axis gimbal systems; Integrated vibration isolation system to meet deep space optical communication systems; Also sized for small CMG application; Wide field of regard; Scalable to large flywheel applications; Maximum use of COTS components; Exploits team core capabilities in vibration isolation systems and high precision, high accuracy point systems.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date May 2, 2019

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date May 2, 2019
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_16140
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Datagov Dedupe Retained 20190501230127
Harvest Object Id 1ee430da-7d26-4030-acea-bf343cc31143
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2016-06-01
Homepage URL https://techport.nasa.gov/view/16140
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2018-07-19
Program Code 026:027
Source Datajson Identifier True
Source Hash 6a86df569f8cf11ab18590a9b9aa36bae7b7e247
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.