Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

ARCTAS P-3B Aircraft Merge Data

Metadata Updated: December 6, 2023

ARCTAS_Merge_P3B-Aircraft_Data contains pre-generated merge data files for the P-3B aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft & Satellites (ARCTAS) mission. Data collection for this product is complete.

The Arctic is a critical region in understanding climate change. The responses of the Arctic to environmental perturbations such as warming, pollution, and emissions from forest fires in boreal Eurasia and North America include key processes such as the melting of ice sheets and permafrost, a decrease in snow albedo, and the deposition of halogen radical chemistry from sea salt aerosols to ice. ARCTAS was a field campaign that explored environmental processes related to the high degree of climate sensitivity in the Arctic. ARCTAS was part of NASA’s contribution to the International Global Atmospheric Chemistry (IGAC) Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate, Chemistry, Aerosols, and Transport (POLARCAT) Experiment for the International Polar Year 2007-2008.

ARCTAS had four primary objectives. The first was to understand long-range transport of pollution to the Arctic. Pollution brought to the Arctic from northern mid-latitude continents has environmental consequences, such as modifying regional and global climate and affecting the ozone budget. Prior to ARCTAS, these pathways remained largely uncertain. The second objective was to understand the atmospheric composition and climate implications of boreal forest fires; the smoke emissions from which act as an atmospheric perturbation to the Arctic by impacting the radiation budget and cloud processes and contributing to the production of tropospheric ozone. The third objective was to understand aerosol radiative forcing from climate perturbations, as the Arctic is an important place for understanding radiative forcing due to the rapid pace of climate change in the region and its unique radiative environment. The fourth objective of ARCTAS was to understand chemical processes with a focus on ozone, aerosols, mercury, and halogens. Additionally, ARCTAS sought to develop capabilities for incorporating data from aircraft and satellites related to pollution and related environmental perturbations in the Arctic into earth science models, expanding the potential for those models to predict future environmental change.

ARCTAS consisted of two, three-week aircraft deployments conducted in April and July 2008. The spring deployment sought to explore arctic haze, stratosphere-troposphere exchange, and sunrise photochemistry. April was chosen for the deployment phase due to historically being the peak in the seasonal accumulation of pollution from northern mid-latitude continents in the Arctic. The summer deployment sought to understand boreal forest fires at their most active seasonal phase in addition to stratosphere-troposphere exchange and summertime photochemistry.

During ARCTAS, three NASA aircrafts, the DC-8, P-3B, and BE-200, conducted measurements and were equipped with suites of in-situ and remote sensing instrumentation. Airborne data was used in conjunction with satellite observations from AURA, AQUA, CloudSat, PARASOL, CALIPSO, and MISR.

The ASDC houses ARCTAS aircraft data, along with data related to MISR, a satellite instrument aboard the Terra satellite which provides measurements that provide information about the Earth’s environment and climate.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date May 30, 2023
Metadata Updated Date December 6, 2023

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date May 30, 2023
Metadata Updated Date December 6, 2023
Publisher NASA/LARC/SD/ASDC
Maintainer
Identifier C2449574014-LARC_ASDC
Data First Published 2022-01-06
Language en-US
Data Last Modified 2022-09-06
Category ARCTAS, geospatial
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Citation 2022-09-06. Archived by National Aeronautics and Space Administration, U.S. Government, NASA/LARC/SD/ASDC. https://doi.org/10.5067/ASDC/SUBORBITAL/ARCTAS_Merge_P3B-Aircraft_Data_1.
Harvest Object Id 1581ccd4-dedc-46ed-b703-37c3238f0d1e
Harvest Source Id 58f92550-7a01-4f00-b1b2-8dc953bd598f
Harvest Source Title NASA Data.json
Homepage URL https://doi.org/10.5067/ASDC/SUBORBITAL/ARCTAS_Merge_P3B-Aircraft_Data_1
Metadata Type geospatial
Old Spatial <?xml version="1.0" encoding="UTF-8"?><gml:Polygon xmlns:gml="http://www.opengis.net/gml/3.2" srsName="EPSG:9825"><gml:outerBoundaryIs><gml:LinearRing><gml:posList>32.0 -167.0 32.0 -60.0 90.0 -60.0 90.0 -167.0 32.0 -167.0</gml:posList></gml:LinearRing></gml:outerBoundaryIs><gml:innerBoundaryIs></gml:innerBoundaryIs></gml:Polygon>
Program Code 026:001
Source Datajson Identifier True
Source Hash 96034812e51dd3fae2ea6852baf90aee595e6944c6db08e0af9565589124ee20
Source Schema Version 1.1
Spatial
Temporal 2008-03-31T00:00:00Z/2008-07-13T23:59:59.999Z

Didn't find what you're looking for? Suggest a dataset here.