Additive Manufacturing of Magnesium (Mg) Alloys

Metadata Updated: February 28, 2019

The proposed work is to investigate additive manufacturing techniques for Mg alloys.[HTML_REMOVED] It will leverage off research being conducted at University of Florida and Kennedy Space Center to develop these alloys and evaluate their properties. Mg alloys as a class have higher specific strength than either steel or aluminum and offer potential for reducing weight in spacecraft.[HTML_REMOVED][HTML_REMOVED] Mg has been approved by Federal and Joint Aviation standards and NASA standards state that it can be used in areas that are not prone to corrosion.[HTML_REMOVED] Thus, the proposed applications include the skin or cladding within structural members or on non-oxidizing environments such as Mars.[HTML_REMOVED] In addition Mg alloys can be recycled, meaning that they can be refabricated into lunar and planetary habitats.The proposed work is to investigate additive manufacturing techniques for these alloys.[HTML_REMOVED] It will leverage off research being conducted at University of Florida and Kennedy Space Center to develop these alloys and optimize their properties. [HTML_REMOVED]The proposed work is designed as a one-year study to formulate an approach to use additive manufacturing to fabricate novel parts and recycle these alloys.[HTML_REMOVED]Mg alloys are traditionally cast then extruded and/or machined to final shape, producing many parts economically.[HTML_REMOVED] However, these techniques are not as amenable to producing thin-gage parts and claddings proposed for space applications. Development of additive manufacturing (AM) techniques offers a novel fabrication approach, easily producing cladding and thin-gage skins as well as incorporating these alloys into compositionally-graded structures.[HTML_REMOVED][HTML_REMOVED] A space-based AM system can also exploit Mg recyclability to produce lunar and planetary habitats from Mg space vehicles.[HTML_REMOVED]Electron beam freeform fabrication (EBF3) is an excellent candidate for AM of Mg alloys.[HTML_REMOVED] Unlike many AM techniques using powder pre-form, its metallic wire precursor offers a much safer way to handle Mg alloys, and it naturally lends itself[HTML_REMOVED]to the large-scale production of claddings and chemically graded parts.[HTML_REMOVED] EBF3 is also being investigated for on-orbit and planetary use, and development of parameters for Mg production would be a large step toward the future recyclability of these materials during space exploration missions.The aim of this project is to demonstrate the feasibility of fabricating Mg alloy structures using additive manufacturing techniques.[HTML_REMOVED] Testing will consist of fabricating and characterizing Mg parts using LaRC[HTML_REMOVED]s EBF3 facility.

Access & Use Information

Public: This dataset is intended for public access and use. License: U.S. Government Work

Downloads & Resources

Dates

Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019

Metadata Source

Harvested from NASA Data.json

Additional Metadata

Resource Type Dataset
Metadata Created Date August 1, 2018
Metadata Updated Date February 28, 2019
Publisher Space Technology Mission Directorate
Unique Identifier TECHPORT_34966
Maintainer
TECHPORT SUPPORT
Maintainer Email
Public Access Level public
Bureau Code 026:00
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://data.nasa.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id f81ca43f-2c5e-4c33-bf35-9a2cc1a37317
Harvest Source Id 39e4ad2a-47ca-4507-8258-852babd0fd99
Harvest Source Title NASA Data.json
Data First Published 2015-10-01
Homepage URL https://techport.nasa.gov/view/34966
License http://www.usa.gov/publicdomain/label/1.0/
Data Last Modified 2018-07-19
Program Code 026:027
Source Datajson Identifier True
Source Hash c8cb64af8f31bc85aeed423fb5e05afc5d610d74
Source Schema Version 1.1

Didn't find what you're looking for? Suggest a dataset here.