Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Skip to content

Impact of Drought on Southwestern Pronghorn Population Trends and Predicted Trajectories in the Southwest in the Face of Climate Change

Metadata Updated: October 28, 2023

Climate often drives ungulate population dynamics, and as climates change, some areas may become unsuitable for species persistence. Unraveling the relationships between climate and population dynamics, and projecting them across time, advances ecological understanding that informs and steers sustainable conservation for species. Using pronghorn (Antilocapra americana) as an ecological model, we used a Bayesian approach to analyze long-term population, precipitation, and temperature data from 18 subpopulations in the southwestern United States. We determined which long-term (12 and 24 months) or short-term (gestation trimester and lactation period) climatic conditions best predicted annual rate of population growth (λ). We used these predictions to project population trends through 2090. Projections incorporated downscaled climatic data matched to pronghorn range for each population, given a high and a lower atmospheric CO2 concentration scenario. Since the 1990s, 15 of the pronghorn subpopulations declined in abundance. Sixteen subpopulations demonstrated a significant relationship between precipitation and λ, and in 13 of these, temperature was also significant. Precipitation predictors of λ were highly seasonal, with lactation being the most important period, followed by early and late gestation. The influence of temperature on λ was less seasonal than precipitation, and lacked a clear temporal pattern. The climatic projections indicated that all of these pronghorn subpopulations would experience increased temperatures, while the direction and magnitude of precipitation had high subpopulation-specific variation. Models predicted that nine subpopulations would be extirpated or approaching extirpation by 2090. Results were consistent across both atmospheric CO2 concentration scenarios, indicating robustness of trends irrespective of climatic severity. In the southwestern United States, the climate underpinning pronghorn subpopulations is shifting, making conditions increasingly inhospitable to pronghorn persistence. This realization informs and steers conservation and management decisions for pronghorn in North America, while exemplifying how similar research can aid ungulates inhabiting arid regions and confronting similar circumstances elsewhere. Long-term data from annual aerial surveys of pronghorn subpopulations in Utah, Arizona, New Mexico, and western Texas were used to calculate annual rates of population growth (λ). When subpopulation-specific harvest and translocation data were available, population estimates for calculating λ were adjusted according to the following equation: λt = Nt/(Nt-1 - h - r + a), where λt is population change from time t-1 to t, Nt and Nt-1 are population estimates from current and previous surveys, respectively, h is number of pronghorn harvested, and r and a are number of individuals removed from and released into the population, respectively, through translocations. Only population estimates from surveys conducted in consecutive years were used to calculate λ. If λ = 2, the associated surveys were removed from analyses because λ would be considered to be derived from unreliable or unstandardized population estimates, resulting in biologically unrealistic population growth rates. Monthly climate data (precipitation [mm/day] and mean temperature [degrees C]) were from 14 x 14 km cells from pronghorn range in each subpopulation in Utah, Arizona, New Mexico, and western Texas. Means across grids were calculated to obtain monthly values of precipitation and temperature. Two realistic future global climate scenarios were compared; a lower (Representative Concentrations Pathways 4.5) and a high (Representative Concentrations Pathways 8.5) atmospheric CO2 concentration scenario. Standardized precipitation index for 3-, 6-, 12-, and 24-month periods were calculated from all available monthly precipitation data using program SPI SL 6 (National Drought Mitigation Center 2014). Monthly mean temperature, total precipitation, and mean SPI (3-, 6-, and 12-month periods) were summarized by important periods in an adult female pronghorn's annual reproductive cycle relative to peak fawning (i.e., early, mid-, and late gestation [3 months each] and lactation [4 months]). Mean temperature and total precipitation were also calculated for 12 and 24 months preceding each population survey. Historic pronghorn population trends in relation to temperature and precipitation were assessed using integrated Bayesian population models. All models included a covariate for density effect (i.e., population in the previous year). Precipitation and temperature model comparison sets were run separately, and each model set included a null model (i.e., only density covariate, no climate covariates). These top individual precipitation and temperature covariates were then combined in models (i.e., one precipitation and temperature covariate per model), and these combined models were run including a term for the interaction between precipitation and temperature using the following equation: ln(λt) = Alpha + Beta1XN[t-1] + Beta2Xprec + Beta3Xtemp + Beta4Xprec*temp. Projected climate data for each pronghorn subpopulation was used to predict λt for each year to 2090. An integrated modeling approach was used, whereby the best performing model climatic predictors from historic population trends for each pronghorn subpopulation was embedded in that subpopulation pronghorn population projection model.

Access & Use Information

Public: This dataset is intended for public access and use. License: No license information was provided. If this work was prepared by an officer or employee of the United States government as part of that person's official duties it is considered a U.S. Government Work.

Downloads & Resources

Dates

Metadata Created Date June 1, 2023
Metadata Updated Date October 28, 2023

Metadata Source

Harvested from DOI EDI

Additional Metadata

Resource Type Dataset
Metadata Created Date June 1, 2023
Metadata Updated Date October 28, 2023
Publisher U.S. Geological Survey
Maintainer
@Id http://datainventory.doi.gov/id/dataset/7bea28045fed5db8c6a209cbdc560e0f
Identifier USGS:59d256ece4b05fe04cc235d2
Data Last Modified 20200814
Category geospatial
Public Access Level public
Bureau Code 010:12
Metadata Context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
Metadata Catalog ID https://datainventory.doi.gov/data.json
Schema Version https://project-open-data.cio.gov/v1.1/schema
Catalog Describedby https://project-open-data.cio.gov/v1.1/schema/catalog.json
Harvest Object Id c2231d94-0c5a-4a36-83b2-26aa0e278330
Harvest Source Id 52bfcc16-6e15-478f-809a-b1bc76f1aeda
Harvest Source Title DOI EDI
Metadata Type geospatial
Old Spatial -114.0,29.8,-100.0,41.3
Publisher Hierarchy White House > U.S. Department of the Interior > U.S. Geological Survey
Source Datajson Identifier True
Source Hash 5af7ea604ec029d50cf379d260e28defe189689c588853f9c27e05541f78d6b9
Source Schema Version 1.1
Spatial {"type": "Polygon", "coordinates": -114.0, 29.8, -114.0, 41.3, -100.0, 41.3, -100.0, 29.8, -114.0, 29.8}

Didn't find what you're looking for? Suggest a dataset here.